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The current trends of increasing incidences of testis, breast and prostate cancers are poorly understood, although it is
assumed that sex hormones play a role. Disrupted sex hormone action is also believed to be involved in the increased
occurrence of genital abnormalities among newborn boys and precocious puberty in girls. In this article, recent litera-
ture on sex steroid levels and their physiological roles during childhood is reviewed. It is concluded that (i) circulating
levels of estradiol in prepubertal children are lower than originally claimed; (ii) children are extremely sensitive to
estradiol and may respond with increased growth and/or breast development even at serum levels below the current
detection limits; (iii) no threshold has been established, below which no hormonal effects can be seen in children exposed
to exogenous steroids or endocrine disruptors; (iv) changes in hormone levels during fetal and prepubertal development
may have severe effects in adult life and (v) the daily production rates of sex steroids in children estimated by the Food
and Drug Administration in 1999 and still used in risk assessments are highly overestimated and should be revised.
Because no lower threshold for estrogenic action has been established, caution should be taken to avoid unnecessary
exposure of fetuses and children to exogenous sex steroids and endocrine disruptors, even at very low levels.
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Introduction

During the past decades, there have been increasing indications that
exogenous factors may influence the endogenous hormone balance.
These include secular trends in hormone-dependent conditions and
diseases such as earlier pubertal development (Herman-Giddens
et al., 1997; Sun et al., 2002; Wu et al., 2002), increasing incidence
of precocious puberty (PP) (Teilmann et al., 2005) and hormone-
related cancers like testicular (Huyghe et al., 2003), breast (Parkin
et al., 2005) and prostate cancers (Black et al., 1997). Furthermore,
similar trends may apply to other disorders of the male reproductive
tract, e.g. cryptorchidism (Boisen et al., 2004), hypospadias (Paulozzi,
1999; Toppari et al., 2001; Boisen et al., 2005) and poor semen
quality (Swan et al., 2000; Jouannet et al., 2001; Jorgensen et al.,
2002). These findings have caused raising concerns of the possible
impact of endocrine disruptors on human health and support the
hypothesis that humans may be exposed to increasing exogenous
influences on the normal endogenous hormone activity.

Because the fetal and childhood periods are considered the
most vulnerable for exogenous sex hormone activity, special
concern has been directed against fetal and prepubertal exposure.

In infancy, the hypothalamic-pituitary-gonadal (HPG) axis is
active during the first months of postnatal life, the so-called
mini-puberty, but is thereafter believed to be relatively quiescent
until it is reactivated as the child enters puberty (Forest et al.,
1974; Andersson et al., 1998; Chellakooty et al., 2003). The
onset of puberty is traditionally characterized by an increased
pulsatile release of hypothalamic GnRH resulting in a pulsatile
gonadotropin secretion. However, more sensitive gonadotropin
assays have now shown that the pulsatile nature of the LH and
FSH secretion is present already before puberty in the supposed
quiescent period of the HPG axis (Dunkel et al., 1992; Apter
et al., 1993; Mitamura et al., 1999; Mitamura et al., 2000).
Equally, new highly sensitive assays have documented that very
low concentrations of estradiol are present in both boys and girls
before puberty (Klein et al., 1994; Paris et al., 2002). This sug-
gests that the HPG axis is functionally active and plays a biolog-
ical role during childhood.

In this article, we review the current literature on sex steroid
activity and its physiological importance in children before puberty.
We will focus on both endogenous activity and the possible impact
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of exogenous factors such as endocrine disruptors and natural and
synthetic hormones from food products.

The pitutary-gonadal hormone axis in prepubertal 
children

The first reports on estradiol concentrations in serum from prepu-
bertal children using radioimmunoassays were published in the
1970s (Jenner et al., 1972; Bidlingmaier et al., 1973; Angsusingha
et al., 1974; Baker et al., 1976; Ducharme et al., 1976). According
to these reports, the levels of estradiol in prepubertal boys and
girls were apparently similar, ranging from 22 to 41 pmol/l. How-
ever, the plasma levels of estradiol in these studies appeared in
most cases to be below or close to the detection limit of the assays.
Comparisons of the early radioimmunoassays with today’s more
sensitive assays have indicated that the variation of the estradiol
measurements was most pronounced for low concentrations with a
tendency towards overestimating the estradiol concentrations giv-
ing false high serum levels in children as a result (McShane et al.,
1996; Ikegami et al., 2001; Juul, 2001; Dorgan et al., 2002;
Nelson et al., 2004; Wang et al., 2005).

In 1994, Klein and coworkers developed an ultrasensitive
recombinant yeast bioassay (RCBA) and reported almost 100-fold
lower estradiol concentration levels in prepubertal children com-
pared with previously reported concentrations. The sensitivity of
this bioassay was 0.07–0.7 pmol/l, and not only did the levels of
estradiol measured in prepubertal children appear to be signifi-
cantly lower than ever reported, but significantly lower estradiol
levels (approximately eight-fold) were observed in prepubertal
boys compared with those in prepubertal girls (mean concentra-
tion 0.3 and 2.2 pmol/l, respectively) (Klein et al., 1994; Larmore
et al., 2002). Equally, recent studies of childhood levels of estra-
diol measured by radioimmunoassays with improved sensitivity
have shown lower estradiol concentrations in boys as compared
with girls of the same age (Norjavaara et al., 1996; Albertsson-
Wikland et al., 1997; Ikegami et al., 2001). The difference
between boys and girls was subsequently confirmed by another
RCBA using human cells with a sensitivity of 3.7 pmol/l (Paris
et al., 2002). However, the mean concentrations of estrogenic
activity (estradiol equivalence) were estimated to be higher than
the levels found by Klein et al. (1994) (corresponding in prepuber-
tal girls to 12.9 pmol/l of estradiol and in prepubertal boys to 5.3
pmol/l of estradiol). Important differences between the two
RCBAs, such as the use of different cell types and the presence or
absence of ether extraction before measurement, might contribute
to the major discrepancies in sensitivity and levels measured.
Thus, although the levels of estradiol in prepubertal children over
the last decade have been shown to be much lower than those pre-
viously reported, the true levels remain to be confirmed.

Equal to the problems of measuring low concentrations of sex
steroids, results on gonadotropins in prepubertal children have
been contradicting. In contrast to previous concepts, the use of
improved assays has demonstrated that LH and FSH in both girls
and boys are secreted in a pulsatile pattern years before the onset
of puberty with a dramatic increase especially in LH pulsatility
from prepuberty to pubertal onset (Dunkel et al., 1992; Apter
et al., 1993; Mitamura et al., 1999, 2000). Corresponding to the
rhythmicity of gonadotropin secretion in prepubertal children,
estradiol and testosterone are secreted with peaks during the early

morning and nadir in the late evening (Albertsson-Wikland et al.,
1997; Ankarberg and Norjavaara, 1999; Mitamura et al., 1999;
Mitamura et al., 2000; Ankarberg-Lindgren and Norjavaara,
2004). Some studies only found the rhythmicity of estradiol in late
prepubertal girls (Norjavaara et al., 1996; Ankarberg and Norjavaara,
1999; Mitamura et al., 2000) and early pubertal boys (Dunkel
et al., 1992; Albertsson-Wikland et al., 1997; Mitamura et al.,
1999; Ankarberg-Lindgren and Norjavaara, 2004). This might,
however, be due to the lack of assay sensitivity, and the diurnal
rhythm may exist at extremely low levels in girls and boys before
puberty, as has been indicated by Klein et al. (1998). The pulsatile
nature of circulating concentrations of estradiol and testosterone in
prepubertal girls and boys is an important factor to take into con-
sideration in the evaluation of these hormones, because the deter-
mination of testosterone and estradiol in single blood sample may
not be representative of the 24 h secretion.

Children are highly sensitive to sex steroid actions

Estrogen and androgen receptors are expressed in sex steroid sen-
sitive tissues throughout childhood, and prepubertal children are
therefore highly responsive to sex steroid actions. Because the pre-
pubertal child’s normal endogenous levels of sex steroids are very
low, even a small variation would account for a major change in
the total activity of the involved hormone, which is reflected in
phenotypic effects in the child.

Palpable breast tissue is a common transient physiological
condition in newborn infants, mainly thought to be related to
exposure to maternal hormones in utero or through breastfeeding.
In a study of 1126 3-month old children, serum levels of estradiol
were significantly higher in the girls compared with those in the
boys. Furthermore, a significant correlation between breast size
and endogenous estradiol levels was observed among the girls,
suggesting a sensitivity of breast tissue to sex steroids early in life
(Schmidt et al., 2002). Accordingly, palpable breast tissue was
significantly more frequent and pronounced in girls than in boys
(Schmidt et al., 2002). The responsiveness of breast tissue to
estrogen seems to be preserved also later in childhood, as the
development of premature thelarche, defined by isolated breast
development in a girl before the age of 8 years with no other clini-
cal signs of sexual maturation, has been correlated to elevated
estradiol levels (Klein et al., 1999).

Another example of an estrogen-sensitive tissue is bone. Obser-
vations in patients lacking estrogen actions because of estrogen
receptor mutations (Smith et al., 1994) or aromatase deficiency
(Conte et al., 1994; Morishima et al., 1995; Carani et al., 1997;
Mullis et al., 1997) have indicated the importance of estradiol in
epiphyseal maturation, normal skeleton proportions and bone min-
eralization in both sexes. Historically, estrogens have been
regarded as growth repressive because of their role in the closure
of epiphyses in puberty. However, subsequently, it has been
shown that estradiol has a biphasic effect on epiphyseal growth,
with the stimulation of linear growth at low concentrations and
closure of the epiphyseal plates and cessation of linear growth at
higher concentrations. The pubertal increase in growth velocity
associated with increased growth hormone (GH) secretion has
traditionally been attributed to testicular androgen secretion in
boys and to estrogens or adrenal androgen secretion in girls. It has,
however, been established that androgens influence the GH axis
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only after aromatization into estrogens (Veldhuis et al., 1997).
Thus, estradiol is probably the principal hormone stimulating the
pubertal growth spurt in boys as well as girls.

The effect of physiological concentrations of estradiol on
growth during childhood was exemplified in a study of girls with
central PP undergoing GnRH agonist (GnRHa) therapy (Lampit
et al., 2002). Continuous GnRHa therapy suppresses gonadotropin
secretion and thereby the gonadal secretion of steroids. It has been
suggested that GnRH therapy may suppress estradiol serum con-
centrations to subnormal prepubertal levels and thereby comprom-
ise normal growth. To secure a normal growth velocity, some girls
in this study were substituted with a mini-dose of estrogen (8 μg
of conjugated equine estrogen) to reach normal prepubertal estra-
diol levels during GnRHa therapy. Growth velocity in girls treated
with both GnRHa and estradiol substitution was maintained,
whereas growth velocity in girls treated with GnRH alone
decreased. The levels of serum estradiol in the estrogen-substi-
tuted girls were below the detection limit of 14 pmol/l both before
and after supplementation with estrogen, and no change in sexual
development or acceleration of bone maturation was seen in these
girls. This suggests that a very low (immeasurable with the con-
ventional radioimmunoassays used) increase in serum estradiol
had a significant influence on the growth of the girls without influ-
encing sexual maturation (Lampit et al., 2002). Equally, the phys-
iological importance of low concentrations of estradiol on growth
and maturation is illustrated in Figure 1. The observed low-dose
effects of estradiol are in accordance with results from animal
studies, suggesting that there is no lower threshold for estrogenic
action: any dose may have an effect (Sheehan, 2006).

Secular trends in pubertal timing

The difference in estradiol levels between prepubertal girls and boys
may help understand various physiological phenomena better, such as
the difference in body composition, skeletal maturation and timing of
puberty. Especially, the higher level of estradiol in girls may account
for their earlier onset of puberty. In girls, the pubertal growth spurt is
known to start soon after the onset of puberty, whereas in boys growth
spurt happens about 1 year after pubertal onset, and ultimately the
cessation of growth occurs earlier in girls than in boys.

Two recent epidemiological studies in the United States
(PROS and NHANES III) highlighted an unexpected advance in
sexual maturation in girls (Herman-Giddens et al., 1997; Sun
et al., 2002; Wu et al., 2002). In these two studies, mean age at
breast development was 8.87 and 9.48 years, respectively, in
African-American girls and 9.96 and 10.38 years, respectively,
in white American girls (Herman-Giddens et al., 1997; Sun
et al., 2002; Wu et al., 2002). Compared with the previous stud-
ies of pubertal onset in American girls, in which age at breast
development was estimated to be 10.8–11.2 years (Foster et al.,
1977; Lee, 1980), breast development occurred significantly
earlier. The accuracy of these findings has been highly debated
because of limitations in the study design, and further studies on
pubertal onset have been requested. Several studies in other
countries, however, have indicated a similar trend towards earl-
ier sexual maturation in girls, although to a lesser extent than
observed in the United States (Lindgren, 1996; Fredriks et al.,
2000; Muinich Keizer and Mul, 2001; Parent et al., 2003; Castellino
et al., 2005), whereas other studies did not find any changes in

the pubertal development (Engelhardt et al., 1995; De Simone
et al., 2004; Juul et al., 2006).

In contrast to girls, no secular trend in the male pubertal timing
has been observed. Although adequate studies are lacking to
cover this thoroughly, pubertal onset in European boys occurs
much later than in boys in the United States: white American and
African-American boys enter puberty at a mean age of 10.1 and
9.5 years, respectively (Herman-Giddens et al., 2001), whereas
European boys enter puberty at an age between 11.2 and 11.8
years (Largo and Prader, 1983; Lindgren, 1996; Mul et al., 2001;
De Simone et al., 2004; Juul et al., 2006).

In a register-based study on PP in Denmark from 1993 to 2001,
the incidence of PP for girls aged 5–9 years was 8 per 10 000 and

Figure 1. Time–course of biochemical and auxological changes in a girl with
central precocious puberty before and during treatment with GnRH agonist
(GnRHa) (indicated by shaded area). Individual serum levels of FSH (top
panel) and estradiol (middle panel) are illustrated in comparison with normal
ranges for healthy girls (Sehested et al., 2000). The concomitant growth
changes are shown in the bottom panel compared with the normal ranges
(Tanner et al., 1966). Increasing FSH levels stimulate ovarian estradiol
production which in turn stimulates estrogen-responsive tissues. Note the presence
of breast development (stage B2) and increased growth velocity approximately
1 year before estradiol levels become detectable (detection limit 18 pmol/l
illustrated by dashed line in middle panel).
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for boys at the same age 1–2 per 10 000 (Teilmann et al., 2005). It
can be speculated that the higher levels of estradiol in girls
account for their higher incidence of PP than in boys, although the
exact mechanisms of puberty onset remain obscure (Ojeda et al.,
2006).

Puberty is traditionally considered precocious in a girl with
breast development before the age of 8 years and in a boy with the
occurrence of a testicular volume of more than 3 ml before the age
of 9 years (Marshall and Tanner, 1969, 1970). However, because
of the findings in the PROS study, this age limit has been taken
into reconsideration in the United States, and it was suggested by
the Lawson Wilkins Pediatric Endocrine Society to lower the age
to 7 years in white girls and to 6 years in African-American girls.
There was no evidence for changing the guidelines for evaluating
boys (Kaplowitz and Oberfield, 1999). This recommendation has,
however, been criticized. In a retrospective study, Midyett et al.
(2003) found that 12.3% of 223 girls referred for true PP at age 7–8
(white girls) or 6–8 (African-American girls) had pathological
explanations for their sexual precocity. Thus, lowering the age at
which a girl should be evaluated might result in failure to identify
cases with pathological conditions.

The timing and tempo of puberty is influenced by many factors
such as genetics, nutritional status, ethnicity, environmental fac-
tors and geographic location [for review see (Parent et al., 2003)].
Because the prepubertal child is highly sensitive to changes in the
endogenous hormonal milieu, which may influence pubertal matu-
ration, these trends towards earlier maturation might be related to
changes in the endogenous hormone balance and should as such
not be ignored by lowering the age at which a child with early
pubertal signs should undergo endocrine evaluation.

Biological impact of exposure to environmental 
xenoestrogens

In the industrial part of the world, the last generations have experi-
enced a steady increase in several hormone-dependent adverse
conditions and diseases. Several reports have pointed to a possible
relation to increasing exposures to environmental pollutants and
other endocrine disruptors (Toppari and Skakkebaek, 1998; Sultan
et al., 2001; Rogan and Ragan, 2003).

Specific focus has been on compounds with direct estrogen-like
action, i.e. the xenoestrogens (such as certain herbicides, pesti-
cides, fungicides, plasticizers and polystyrenes). Because some of
these compounds are used in food production and food packaging,
one route of exposure that has caused concern is diet (e.g. pesti-
cide residues on fruit and vegetables and food contaminated by
compounds found in can lining and plastic wrapping), but the con-
tribution from naturally occurring xenoestrogens such as phytoes-
trogens found in large concentrations in certain plants and
mycoestrogens from fungi must also be considered. This is espe-
cially relevant in soy-based formulae containing high levels of
phytoestrogens given to infants in a critical developmental period.
However, many phytoestrogens are aromatase inhibitors at physi-
ological concentrations, and they may therefore act to some extent
as anti-estrogens rather than as estrogens (Almstrup et al., 2002).
Many of the compounds originally identified as weak estrogens
have subsequently also been shown to possess anti-androgenic
properties, e.g. by reducing the testicular testosterone synthesis
(Gray et al., 2006).

Several animal studies have shown that prenatal exposure to
endocrine disruptors can produce adverse effects on male repro-
ductive development similar to the trends observed among humans
(Wood et al., 1991; Delemarre-van de Waal, 1993; Howdeshell et al.,
1999; Fisher et al., 2003; Hotchkiss et al., 2004; Noriega et al., 2005;
Vinggaard et al., 2005). Disturbed hormone balance during
postnatal development can also lead to persistent adverse effects
in the adult animal. Thus, in Rhesus monkeys, elevated levels of
estradiol during gonadotropin-induced puberty caused inhibition
of testicular growth and testosterone production, reduced number
of Leydig cells and higher incidence of maldescensus of the testis
compared to controls (Ramaswamy, 2005). Also exposure to the
endocrine disruptor dibutyl phthalate during adolescent develop-
ment in rabbits led to persistent disturbed endogenous testosterone
production (Higuchi et al., 2003).

Exogenous exposure to natural and synthetic sex steroids

The natural estrogen estradiol is at least 10 000-fold more potent
than most identified environmental xenoestrogens, and the dietary
exposure (from e.g. meat, dairy products and eggs) to the natural
sex steroids is therefore highly relevant in the discussion of the
impact of estrogens on human development and health. Estradiol,
progesterone and testosterone are substances that are naturally
occurring in both humans and animals in identical molecular
forms. Estradiol-17β is the most potent estrogenic substance,
whereas the metabolites, estrol and estrone are less active (Gutendorf
and Westendorf, 2001). Despite the lesser activity of these metabolites,
they nevertheless contribute to the total bioactivity of estrogen in
animals, as they can be present in high concentrations.

Cases of accidental exposures of children to estrogens have
shown that children are sensitive to exogenous hormones (Beas
et al., 1969; Gabrilove and Luria, 1978; Fara et al., 1979; Kimball
et al., 1981; Edidin and Levitsky, 1982; Felner and White, 2000).
Gynaecomastia was observed in three prepubertal boys because of
indirect exposure to estrogen cream used by their postmenopausal
mothers (Felner and White, 2000). These boys presented with
gynaecomastia, advanced bone age and elevated estradiol levels,
but 6 months after the removal of exposure, the gynaecomastia
regressed and the levels of serum estradiol were immeasurable
(Felner and White, 2000). An outbreak of gynaecomastia and ele-
vated serum estradiol levels in boys and girls attending a school in
Milan were reported. Poultry and beef from the school cafeteria
were suspected as the sources, although this was never confirmed
(Scaglioni et al., 1978; Fara et al., 1979).

Apart from these more extreme episodes of exposure, humans
are commonly exposed to a wide variety of suspected endocrine
disruptors. The exposure levels may be low and the potency of the
compounds weak, and clear effects on endocrine function from
such exposures are difficult to demonstrate. On the contrary,
because of our modern way of living, the general population is
exposed to many potential endocrine disruptors concomitantly.
Both in vitro and in vivo studies have shown that the action of
estrogenic compounds is additive (Rajapakse et al., 2002; Tinwell
and Ashby, 2004), but little is known about the possible synergis-
tic or additive effects of these compounds in humans (Toppari and
Skakkebaek, 1998).

All edible tissues of animal origin contain estradiol and its
metabolites in varying concentrations, depending on the kind of
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tissue, species, gender, age and physiological stage of the animal.
In addition to these naturally occurring endogenous hormones, the
application of exogenous sex steroids and other hormones is
licensed for use as active growth promoters in cattle production in
several countries (e.g. the United States, Canada, Argentina, Australia
and New Zealand), as their use improves the rate of weight gain or
feed efficiency. This application of estradiol-17β, alone or in com-
bination with other natural (testosterone or progesterone) or potent
synthetic hormones (e.g. trenbolone, melengestrol acetate and
Zeranol), results in increased amounts of residues of estrogens
when compared with untreated animals (The Joint FAO/WHO
Expert Committee on Food Additives, 1988; Maume et al., 2001;
Stephany, 2001). The use of exogenous hormones as growth
promoters has been forbidden since 1989 in all member states of
the European Union (EU).

The US Food and Drug Administration’s (FDA) guidelines
suggest that the maximal secure intake of natural sex steroids
equals 1% of the normal daily production rate of the relevant hor-
mone of prepubertal children. In the case of estradiol, prepubertal
boys synthesize the least, and the maximum acceptable daily
intake (ADI) was therefore estimated to be 65 ng/day according to
an estimated production rate of 6.5 μg/day (US Food and Drug
Administration, 1999). Identical production rates were also given
by the Joint FAO/WHO Expert Committee on Food Additives
(JECFA, 1988). In recent reviews, however, the value of this esti-
mated ADI has been questioned, as the daily production rates that
it is based on are very doubtful (Andersson and Skakkebaek, 1999;
Daxenberger et al., 2001; Maume et al., 2001; Partsch and Sippell,
2001). Daily production rates of hormones are calculated from the
estimates of the metabolic clearance rate (MCR, the volume of
serum that can be cleared of a given hormone during 24 h) and of
the plasma concentrations of the given hormone according to the
following equation:

Daily production rate (μg/day) = plasma concentration (μg/ml) ×
MCR (ml/day).

Because the concentrations of plasma estradiol in prepubertal
children were highly overestimated in the measurements using
early radioimmunoassays and because the MCR most probably
was based on values obtained from adults, it has been suggested
that the production rate of estradiol in prepubertal boys used by
JECFA and FDA to determine the ADI might be 100–200 times
higher than the actual production rate (Andersson and Skakkebaek,
1999). According to a revised calculation of the original produc-
tion rate calculated by JECFA and FDA based on the estradiol
measurements of Klein et al., the production rate of estradiol in
prepubertal boys was reduced to a level between 0.04 and 0.1 μg/
day (Andersson and Skakkebaek, 1999). The production rate of
0.04 μg/day correlates to an ADI of 400 pg/day (1% of 0.04 μg).
Thus, although the actual serum concentrations of estradiol in pre-
pubertal children remain to be unequivocally determined, all
recent studies indicate that the physiological levels are signifi-
cantly lower than those previously believed. Furthermore, the
MCR for children is simply not available.

In a review on natural sex steroids in meat, the average concen-
trations of estradiol-17β in meat from untreated cattle was esti-
mated to be 4.3 ng/500 g and from cattle treated with estradiol
20 ng/500 g (Daxenberger et al., 2001). Five hundred grams of
meat was used according to the JECFA estimate of a theoretic
daily consumption of 300 g of muscle, 100 g of liver, 50 g of

kidney and 50 g of fat. Applying this to the revised threshold of
400 pg estradiol per day, this would be reached after the ingestion
of 47 g untreated meat and already after ingestion of 10 g of
treated meat (Daxenberger et al., 2001). On the basis of a stand-
ardized food intake, Daxenberger et al. (2001) estimated that the
inclusion of meat from treated animals increased the daily intake
of estrogen from food by 37.9%. Also the intake of pork, poultry,
fish, eggs and dairy products contributes to the total dietary estra-
diol consumption. The concentrations of estrogens in dairy prod-
ucts depend on the physiological status of the lactating mammals.
Modern dairy cows are often pregnant and may continue to lactate
during the latter half of pregnancy when the estradiol concentra-
tion in blood and hence in milk increases significantly.

During the last decade, more adequate methods based on gas
chromatography-mass spectrometry (GC-MS) have been
developed to measure residues in food. Most studies on estradiol
residues in meat include measurements of estradiol-17β and its
major metabolites, estradiol-17α and estrone. A method to separ-
ate various classes of free estradiol and conjugates such as gluco-
sidic and fatty acid ester forms was recently developed (Maume
et al., 2001). Comparing the estrogen measurements using this
method with previously reported measurements revealed a good
correlation when analysing meat from untreated cattle. However,
the increased levels of total estrogenicity in samples from treated
animals turned out to be largely because of the lipoidal esters and
not, as previously believed, because of free or classical conjugated
forms of estradiol (Maume et al., 2001). The bioavailability and
estrogenicity of these fatty acid esters of estradiol should be con-
sidered in the evaluation of human exposure. Thus, even though
the concentration of estradiol may be within the range of untreated
meat (including from pregnant heifers) (Stephany et al., 2004), the
increased level of these metabolites in treated meat may poten-
tially influence human health.

Equally, when evaluating the estrogenicity of synthetic growth
promoters, the fraction of existing metabolites of the relevant
compound has to be taken into account. In the case of Zeranol, a
synthetic β-resorcylic acid lactone, there are six major forms that
each can be metabolized into all the other forms. The expression
of endogenous estrogen-related genes in human breast cancer
MCF7 cells treated with increasing concentrations of Zeranol and
its metabolites, diethylstilboestrol (DES), estradiol-17β, a phy-
toestrogen (genistein) and a putative endocrine disruptor, Bisphe-
nol-A, was analysed to compare the estrogenic potency of these
compounds (Leffers et al., 2001). Zeranol and its metabolites
turned out to be as potent as DES and estradiol-17β, whereas gen-
istein and Bisphenol-A were up to five and six orders of magni-
tude less potent estrogens, respectively. Significant and
measurable changes in the MCF7 cell gene expression were
observed at concentrations of 1 pmol/l of the three high-potency
estrogens (Leffers et al., 2001). It has been shown that exposure to
both low- and high-dose Zeranol treatment of rats caused signifi-
cantly earlier vaginal opening, irregularity of estrous cycle (high
frequency of prolonged estrus or prolonged diestrus) at 8–11
weeks of age and anovulatory ovaries (ovaries without newly
formed corpora lutea) (Yuri et al., 2004). Because Zeranol has a
significantly higher estrogenic potency than other potential endo-
crine disruptors, its presence in meat may constitute the major
exposure to exogenous estrogens for consumers in countries
where it is used for cattle production.
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Other synthetic substances commonly used as growth promoters in
cattle are the gestagen melengestrol acetate and the androgen trenbo-
lone. Because these synthetic hormones have no legal application in
humans, the knowledge on their effects in man is limited; however,
melengestrol acetate and trenbolone bind to the human progesterone
and androgen receptors with high affinities (Bauer et al., 2000).

The role of carrier proteins

The binding properties of endogenous and exogenous estrogens to
serum proteins must also be considered. Because endogenous
estradiol has a high affinity to hormone-binding proteins in serum
[especially sex hormone-binding globulin (SHBG)] with about
98% bound, only a very small fraction of estradiol is in its free and
bioavailable form. In contrast, most exogenous hormone-like
chemicals including synthetic growth-promoting hormones
exhibit limited or no binding to carrier proteins (Sheehan and
Young, 1979; Shrimanker et al., 1985). Thus, the potency of syn-
thetic hormones can be much larger than their actual concentra-
tions suggest (Crain et al., 1998; Nagel et al., 1998). To evaluate
the potential threat of growth promoters in meat production, one
must take these factors into account.

Possible late effects of exposure to exogenous hormones in 
childhood

Sex hormone levels in early life may influence development of
breast pathology such as breast cancer in adulthood (Ekbom et al.,
1997). Epidemiologic evidence suggests that females exposed to
elevated levels of maternal estradiol during fetal life have an
increased risk of breast cancer in adult life (Mandybur et al., 1978;
Ekbom et al., 1997; Swerdlow et al., 1997; Weiss et al., 1997;
Halakivi-Clarke et al., 2000), whereas conditions with low levels
of maternal estradiol (e.g. preeclampsia) have a protective effect
on the female fetus against breast cancer in adulthood (Innes and
Byers, 1999).

A study of the correlation between incidence rates for hormone-
dependent cancers (breast, ovarian and corpus uteri cancers) and
food intake revealed a strong association to the amount of animal-
derived food consumed in the 40 countries studied. Especially, the
consumption of milk and dairy products was of concern according
to the fact that these products contain the highest concentration of
estradiol (Ganmaa and Sato, 2005).

Moreover, recent evidence suggests that breast cancer origi-
nates from a pool of tissue stem cells (Smalley and Ashworth,
2003). Because estradiol levels during fetal development modulate
the number of cells with stem cell potential, prenatal estradiol
levels may play a significant role in the risk of breast cancer in the
adult (Baik et al., 2005). Furthermore, a high birth weight, early
age at peak growth, high stature at 14 years of age and low BMI at
14 years of age have been associated with a high risk of breast
cancer in adulthood (Ahlgren et al., 2004); because even very low
levels of estradiol significantly stimulate prepubertal growth,
prepubertal exposure to low doses of exogenous estradiol may
increase the risk of breast cancer later in life.

Some male reproductive health disorders may also have their
origin in childhood. Recently, the existence of a testicular dysgene-
sis syndrome explaining some of the observed adverse trends in
male reproductive health was suggested (Skakkebaek et al., 2001).

According to this hypothesis, several male reproductive disorders
such as testicular cancer, cryptorchidism, hypospadias and poor
sperm quality may be because of a disturbance of the hormonal bal-
ance during the development of the reproductive organs. These
adverse outcomes are thought to be related primarily to factors
affecting fetal development. However, permanent effects on repro-
duction by exposures during childhood cannot be excluded as indi-
cated by animal studies (Higuchi et al., 2003; Ramaswamy, 2005).

Conclusion

Low doses of sex steroids and synthetic molecules interfering with
normal sex steroid action can exert significant effects in the fetus
and the child, where a fine balance between the pituitary gland and
the gonads exists. Recent data have shown that the endogenous
(natural) levels of estradiol in children are significantly lower than
those previously assumed. Exogenous contributions will therefore
constitute a relatively higher proportion of the sex hormone activ-
ity in the immature child.

Exposure to environmental components with endocrine disrupt-
ing potencies is causing increasing concern. Intake through food is
presumed to contribute significantly to the daily exposure, and the
use of growth promoters in cattle production results in an
increased total level of sex steroids in meat. A certain level of
estradiol, testosterone and other sex steroids is (and has probably
always been) present in food, e.g. meat, milk, and egg products.
However, a systematic use of natural and synthetic steroids in
meat production will undoubtedly expose the population in gen-
eral to somewhat higher levels of sex hormones, although they
often will be below detection limits (for the natural estradiol, tes-
tosterone and progesterone) or difficult to detect because of the
lack of available methods for analysis (of the synthetic Zeranol,
trenbolone and melengestrol acetate).

The question of possible effects of sex steroid exposure of chil-
dren is extremely relevant, as we have been unable to find good
evidence of a safe margin for exposure of children to sex hor-
mones added to food products. Previous calculations seem to be
based on flawed assumptions. With today’s knowledge about the
levels of sex steroids in prepubertal children, the FDA’s estimated
daily production rates of sex steroids in children are highly overes-
timated. We therefore recommend that the threshold for secure
daily intake of sex hormones based on these estimates should be
revised.
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